Correlation of Surface Potentials in Physical Adsorption

By J. Müller†

(School of Chemistry, The University of Bradford, Bradford 7, Yorks.)

Summary Hall's equation describes the qualitative trend in surface potentials of physically adsorbed rare gases correctly but the numerical coefficient is 1.6 rather than 2.25.

HALL¹ showed that surface potentials (S.P.'s) in physical adsorption are proportional to the metal-metal bond strength of the solid (as expressed by the heat of sublimation, ΔH_{s}) and the polarizability (α) of the adsorbate.

We have recently measured the S.P.'s of Kr and Xe on films of Ni, Ti, and Mo and found³ that the general trend is as predicted by Hall but the actual values of the S.P.'s were appreciably lower than those calculated from equation (1). This is illustrated in the Figure for S.P.'s of Xe on different metals. We have included all data available where the thermal history of the surface was stated.

Inspection of the data indicates that the S.P. clearly depends on the history of the films, being lower for sintered

Experimental		Deposition temp.	Annealing temp.	
point	Author and reference	(°K)	(°к)	Method
• .		· · ·	. ,	
1	Mignolet ² Müller and Roberts ³	77 296	77	capacitor
2)	Muller and Roberts.	296 90	296	capacitor
$\left. \begin{array}{c} 2\\ 3\\ 4\\ 5\end{array} \right\}$	Suhrmann et al. ⁴	90 90	$373 \frac{90}{373}$	photoelectric
1		298	298	•
$\begin{pmatrix} 3\\6 \end{pmatrix}$	Pritchard et al. ⁵	90;298	298;333	diode and
7 ∫	i incliai d'ei ui.	90;333	333	capacitor
		77	323	
$\left. \begin{array}{c} 8\\ 9\\ 10 \end{array} \right\}$	Klemperer and Snaith ⁶	293	293	diode
		77	293	
11		293	373	
12 j		77	293 1	
13		77	473	
14	Bouwman'	77	573	photoelectric
		293	473	
16		77	77	
17)		77	473	
18	Rootsaert et al. ⁸		>2800	FEM ^a
19	Gomer ⁹			FEM
20	Ehrlich and Hudda ¹⁰		> 2300	FEM
21	Nikliborc and Dworecki ¹¹			FEM
a	Field Emission Microscopy			

Using Mignolet's data² he derived the semi-empirical equation (1).

S.P. =
$$2 \cdot 25 \times \Delta H_s \times 10^{21} \times \alpha$$
 (v) (1)

films likely to expose a higher proportion of close packed low index planes. We consider that the first factor in Hall's equation involves the adsorption energy, which is lower on close-packed surfaces.^{8,10} Although the S.P.'s

† Now at Department of Physics, University of Keele, Keele, Staffordshire, ST5 5BG. On leave from Czechoslovak Academy of Sciences, Prague.

were obtained by different experimental techniques,[‡] it is possible to correlate them for similarly treated sintered

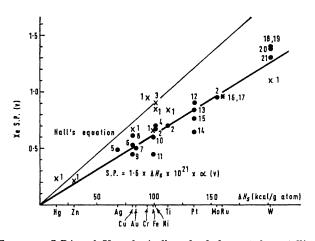


FIGURE. S.P.'s of Xe physically adsorbed on polycrystalline surfaces in correlation with ΔH_{\bullet} of the metals (ΔH_{\bullet} taken from G.C. Bond, "Catalysis by Metals," Academic Press, London and New York, 1962, p. 489); \times , unsintered surfaces; \bigcirc , sintered surfaces; experimental points 1–17 were obtained for evaporated films, 18-21 obtained for the total emitting area of the tips.

surfaces according to equation (2). Equation (2) also

S.P. =
$$1.6 \times \Delta H_8 \times 10^{21} \times \alpha$$
 (v) (2)

describes well the S.P. data for Kr which confirm Hall's idea on the proportionality of S.P. to α , but these are not plotted because except for our own data³ (0.4, 0.5, and 0.7 v for Ni, Ti, and Mo, respectively) there was only one value, obtained by FEM at 20°K, reported.¹⁰

Regarding the discrepancy between equation (1) and the results, even for unsintered films (mainly for metals with higher $\Delta H_{\rm s}$), it is felt that Hall's method of averaging the data for simple molecules (rare gases) as well as complicated ones (N₂, CO, CH₄, C₂H₂, C₂H₄, and C₂H₆) is responsible. It is difficult to obtain an unambiguous interpretation and hence correlation of the S.P.'s if one includes molecules which possess permanent dipoles and dipoles of higher symmetry.

I have also tried to correlate the S.P.'s of rare gases according to other parameters of the metals, e.g. according to the work function as suggested by Suhrmann¹² but this was unsatisfactory.

I thank Dr. D. F. Klemperer (University of Bristol) and R. Bouwman (University of Leiden) for permission to quote their unpublished data.

(Received, July 15th, 1970; Com. 1146.)

[‡] The methods based on electron emission are weighted in favour of low work function parts of the total surface.

¹ P. G. Hall, Chem. Comm., 1966, 877.

² J. C. P. Mignolet, Discuss. Faraday Soc., 1950, 8, 105; J. Chem. Phys., 1953, 21, 1298; in "Chemisorption," ed. W. E. Garner, Butterworths, London, 1957, p. 118. ³ J. Müller and M. W. Roberts, unpublished data.

⁴ R. Suhrmann, E. A. Dierk, B. Engelke, H. Hermann, and K. Schulz, Naturwiss., 1956, 43, 127.

- ⁵ J. Pritchard, Nature, 1962, 194, 38; Trans. Faraday Soc., 1963, 59, 437; C. S. Alexander, R. R. Ford, and J. Pritchard, in "Fourth International Congress on Catalysis," Moscow, 1968, preprint of the paper 53.
 - D. F. Klemperer and J. C. Snaith, personal communication.
 - ⁷ R. Bouwman, personal communication.
 - ⁸ W. J. M. Rootsaert, L. L. van Reijen, and W. M. H. Sachtler, J. Catalysis, 1962, 1, 416. ⁹ R. Gomer, J. Chem. Phys., 1958, 29, 443.

 - ¹⁰ G. Ehrlich and F. G. Hudda, J. Chem. Phys., 1959, 30, 493.
- ¹¹ J. Nikliborc and Z. Dworecki, Acta Physica Polonica, 1967, 32, 1023.
- ¹² R. Suhrmann, Z. Elektrochem., 1956, 60, 804.